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EQUATIONS OF THE SHALLOW WATER MODEL

ON A ROTATING ATTRACTING SPHERE.

1. DERIVATION AND GENERAL PROPERTIES

UDC 532.5+533+517.9A. A. Cherevko and A. P. Chupakhin

A shallow water model on a rotating attracting sphere is proposed to describe large-scale motions of
the gas in planetary atmospheres and of the liquid in the world ocean. The equations of the model
coincide with the equations of gas-dynamic of a polytropic gas in the case of spherical gas motions
on the surface of a rotating sphere. The range of applicability of the model is discussed, and the con-
servation of potential vorticity along the trajectories is proved. The equations of stationary shallow
water motions are presented in the form of Bernoulli and potential vorticity integrals, which relate
the liquid depth to the stream function. The simplest stationary solutions that describe the equilib-
rium state differing from the spherically symmetric state and the zonal flows along the parallels are
found. It is demonstrated that the stationary equations of the model admit the infinitely dimensional
Lie group of equivalence.

Key words: shallow water, motions on a sphere, Lie groups, potential vorticity, stationary solu-
tions.

Introduction. Description of hydrodynamic phenomena that occur in the atmosphere and in the ocean
is a non-trivial problem. Important factors that affect the dynamics of the liquid or gaseous shell of a planet are
gravitation and rotation. It is interaction of these two forces that retains the medium as a whole in an equilibrium
state, with motions of different scales in the atmosphere.

For brevity, in what follows, we understand the atmosphere hydrodynamics as the motion of a continuous
medium (liquid or gas) located on the surface of a rotating sphere in the field of a gravity force directed toward
the sphere center with a constant acceleration. The model being developed is equally applicable to gas motions in
planetary atmospheres and to large-scale oceanic flows.

Hydrodynamic phenomena in the atmosphere are characterized by a large variety of scales. On one hand,
these are large-scale (planetary) phenomena (circulation cells), in particular, global vortices, such as cyclones and
anticyclones, and oceanic flows; on the other hand, these are small-scale motions, which essentially depend on the
surface relief. As the phenomenon under study depends on many factors, the universal model of atmosphere hydro-
dynamics is extremely complicated and difficult for investigations. It seems natural to identify the characteristic
scales of motion to be studied and to use an appropriate approximate hydrodynamic model.

The specific feature of atmosphere hydrodynamics problems is the compactness of the manifold on which the
corresponding mathematical model is determined. Available results on the behavior of the vector fields on a sphere,
on one hand, and an empirical idea that all areas of the planet cannot have an identical weather, on the other hand,
allow us to conclude that solutions that describe the motion of the atmosphere as a whole have singularities, such
as sources and sinks, discontinuities and fronts separating air masses with different characteristics of motion.
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The basic model commonly used to describe large-scale phenomena in the atmosphere is the Euler equations
for an ideal incompressible fluid. The assumptions of fluid incompressibility and a minor effect of viscosity are
valid for moderate, obviously subsonic velocities of the medium and large-scale motions. The shallow water model
derived from the problem with a free boundary for the Euler equations under the assumption that the vertical
scale of motion is small, as compared with the horizontal scale, is used in atmosphere and ocean hydrodynamics.
Further simplifications are usually applied to the shallow water model, and something similar to a model of the
f - or β-plane is considered. Some part of the sphere surface is replaced by a plane tangential to it, which substantially
simplifies the model. This approximation, however, cannot be used to describe the motion on a sphere, which is
extended over the latitude. In this case, full equations of the shallow water theory on a sphere should be considered
in this case.

Various hydrodynamic phenomena in the atmosphere and in the ocean have been studied in numerous papers
(see, e.g., [1–8]). It should be noted that the first papers dealing with hydrodynamics on a sphere were those written
by Gromeka [9] and Zermelo [10].

Various versions of the shallow water equations are used in atmosphere and ocean hydrodynamics, but none
of the papers describes systematic derivation of the model on a sphere as a whole. The shallow water theory on a
sphere without rotation was justified in the paper of Ovsyannikov [11], where the model equations were derived by
expanding the solution of the exact Cauchy–Poisson problem of waves in an ideal incompressible fluid on the sphere
surface with respect to a small parameter. For physical applications and for evaluating the quality of approximation,
it seems reasonable to derive shallow water equations directly from the Euler equations.

The quantity ε = H0/a0 plays the role of the small parameter in shallow water equations [H0 is the charac-
teristic depth of the layer occupied by the continuous medium and a0 is the sphere (planet) radius]. Shallow water
equations are derived under the assumption that the parameter ε is small, the field of velocities is independent of
the vertical (radial) coordinate, and there is no vertical transfer (the radial component of velocity equals zero).

Thus, the model describes large-scale planetary motions that occur during time periods of the order of
several weeks. For such time scales, planet rotation exerts a significant effect on medium motion. In this case, the
velocity can be interpreted as its mean value averaged over the depth, and the temperature effects are assumed to
be manifested via the motion hydrostaticity only.

In the present paper, we derive equations of the shallow water model on a rotating attracting sphere and
study some of its general properties: conservation of potential vorticity, the form of the solution of equations of
stationary motions in terms of the stream function, the presence of an infinitely dimensional Lie group of equivalence
of stationary equations, as well as stationary zonal flows.

1. Equations of Motion in a Rotating Coordinate System. We formulate the system of equations in
a non-inertial coordinate system fitted to the rotating planet. Let us briefly describe derivation of the equations of
motion of a continuous medium in a coordinate system rotating with a constant angular velocity ω. This seems to
be reasonable, because some terms are unduly omitted in deriving equations of motion in some books on atmosphere
hydrodynamics.

Let i, j, and k be the orths of a certain inertial coordinate system, and let i′, j′, and k′ be the orths fitted
to a rotating planet. Then, we obtain the following expansions for an arbitrary vector a:

a = a1i + a2j + a3k = a′1i
′ + a′2j

′ + a′3k
′. (1.1)

As we have

di′

dt
= ω × i′,

dj′

dt
= ω × j′,

dk′

dt
= ω × k′ (1.2)

in the rotating coordinate system, Eq. (1.1) yields

da

dt
=
d′a
dt

+ ω × a, (1.3)

where d′/dt is the total derivative in the non-inertial coordinate system.
Let a = x be the radius vector:

x = xi + yj + zk = x′i′ + y′j′ + z′k′.
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Fig. 1. Layout of the problem and coordinate system.

Then,
dx

dt
= u and

d′x
dt

= u′ are the velocities in the inertial and non-inertial coordinate systems, respectively. For

a = x and u = dx/dt, Eqs. (1.1) and (1.3) yield

u = u′ + ω × x. (1.4)

Let a = u in Eq. (1.3). Then we have
du

dt
=
d′u
dt

+ ω × u. (1.5)

Substituting Eq. (1.4) into Eq. (1.5), we obtain
du

dt
=
d′u′

dt
+ 2ω × u′ + ω × (ω × x).

Thus, the equations of motion in the rotating planet-fitted coordinate system are written in the form
d′u′

dt
+ 2ω × u′ + ω × (ω × x) = g − ρ−1∇p, (1.6)

where g is the free-fall acceleration. The term 2ω × u′ is called the Coriolis force. Sometimes the centrifugal force
ω × (ω × x) is united with the gravity force by introducing the acceleration g1 = g − ω × (ω × x); this procedure
is justified by the fact that both these forces are functions of the point location only.

In some papers, the term corresponding to the centrifugal force in Eq. (1.6) is immediately omitted. This
action is motivated by the smallness of this term, as compared with the Coriolis force, because it depends on
the angular velocity squared. Generally speaking, this action is illegitimate before dimensionless parameters are
introduced in Eqs. (1.6) and the magnitudes of terms in equations with dimensionless variables are estimated.

2. Formulation of the Exact Problem. By an example of a sphere of radius a0, let us consider the
motions in a layer of an ideal incompressible fluid a0 < r < a0 +H(t, θ, ϕ). Here r =

√
x2 + y2 + z2; the latitude

0 < θ < π and longitude 0 � ϕ < 2π are the spherical coordinates. The fluid is affected by the gravity force directed
to the sphere center; g is a constant acceleration. The sphere rotates with a constant angular velocity Ω0. Let us
use U , V , and W to denote the radial, latitudinal (positive in the south direction), and longitudinal (positive in
the east direction) components of the velocity vector u; R = const is the density, and P is the pressure in the fluid.
The coordinate system is chosen in such a way that the axis of revolution coincides with the z axis passing through
the north pole N (θ = 0) and south pole S (θ = π) (Fig. 1).

The Euler equations are valid inside the layer. Let us write these equations in a non-inertial coordinate
system fitted to the rotating planet. According to Eq. (1.6), we have
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DU = r−1(V 2 +W 2) −R−1Pr + 2Ω0W sin θ + rΩ2
0 sin2 θ − g,

DV = r−1(W 2 cot θ − UV ) − (rR)−1Pθ + 2Ω0W cos θ + rΩ2
0 sin θ cos θ,

DW = −r−1W (V cot θ + U) − (rR sin θ)−1Pϕ + 2Ω0(U sin θ + V cos θ),
(2.1)

r−2(r2U)r + (r sin θ)−1(Wϕ + (V sin θ)θ) = 0,

where D = ∂t + U ∂r + r−1V ∂θ + (r sin θ)−1W ∂ϕ is the total derivative. Let us introduce a variable z = r − a0

(z > 0). Then, we obtain

r−1 = (z + a0)−1 = a−1
0

(
1 +

z

a0

)−1

=
1
a0

(
1 − z

a0
+ . . .

)
. (2.2)

Let us assume that the quantity z/a0 is small and omit all terms in the right side of Eq. (2.2) except for the first
one, assuming that

r−1 ≈ a0
−1, ∂r = ∂z. (2.3)

Taking into account assumptions (2.3), we can write system (2.1) in the form

D′U = a−1
0 (V 2 +W 2) −R−1Pz + 2Ω0W sin θ + a0Ω2

0 sin2 θ − g,

D′V = a−1
0 (W 2 cot θ − UV ) − (a0R)−1Pθ + 2Ω0W cos θ + a0Ω2

0 sin θ cos θ,

D′W = −a−1
0 W (V cot θ + U) − (a0R sin θ)−1Pϕ + 2Ω0(U sin θ + V cos θ),

(2.4)

Uz + a−1
0 U + (a0 sin θ)−1(Wϕ + (V sin θ)θ) = 0,

where D′ = ∂t + U ∂z + a−1
0 (V ∂θ + (sin θ)−1W ∂ϕ). Equations (2.4) are satisfied in the layer 0 < z < H(t, θ, ϕ).

On the bottom (z = 0), we impose the condition

U
∣
∣∣
z=0

= 0. (2.5)

On the free boundary z = H(t, θ, ϕ), we set the dynamic condition P = 0 and the kinematic condition

Ht + a−1
0 (V Hθ + (sin θ)−1WHϕ) = U. (2.6)

Problem (2.4)–(2.6) is considered as the initial problem, and it is from this problem that the shallow water equations
on a rotating sphere will be derived.

3. Transition to Dimensionless Variables. Let us introduce dimensionless variables τ , z1, u, v, w, ρ,
p, and h related to the initial variables as follows:

t = T0τ, z = H0z1, U = U0u, V = V0v, W = V0w,

R = R0ρ, P = P0p, H = H0h.
(3.1)

The constants T0, H0, U0, V0, R0, and P0 in Eqs. (3.1) are the characteristic quantities that describe the time, the
vertical scale, the radial and tangential components of velocity, the density, and the pressure. The latitudinal and
longitudinal scales of velocity are assumed to be identical and equal to V0. Passing to variables (3.1) in Eq. (2.4),
we obtain the system

D̄u =
V 2

0 T0

a0U0
(v2 + w2) − T0P0

U0R0H0
ρ−1pz1 + 2Ω0

T0V0

U0
w sin θ − gT0

U0
+
a0T0Ω2

0

U0
sin2 θ,

D̄v =
V0T0

a0
w2 cot θ − U0T0

a0
uv − T0P0

V0R0a0
ρ−1pθ + 2T0Ω0w cos θ +

a0T0Ω2
0

V0
sin θ cos θ,

D̄w = −V0T0

a0
vw cot θ − U0T0

a0
uw − T0P0

V0R0a0
(ρ sin θ)−1pϕ − 2T0Ω0v cos θ − 2U0T0

V0
Ω0u sin θ,

(3.2)

U0

H0
uz1 +

2U0

a0
u+

V0

a0
(sin θ)−1(wϕ + (v sin θ)θ) = 0,
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where D̄ = ∂τ + u ∂z1 + v ∂θ + (sin θ)−1w ∂ϕ. After normalization, the kinematic condition (2.6) acquires the form

hτ +
T0V0

a0
(vhθ + (sin θ)−1whϕ) =

T0U0

H0
u. (3.3)

In the case of a rotating sphere, there is a natural time scale T0 = 2π/Ω0. The characteristic lengths H0 and a0

and velocities U0 and V0 are related as

T0 =
H0

U0
=
a0

V0
. (3.4)

Relations (3.4) correspond to identical time scales of motions in the radial direction with the characteristic velocity
U0 at distances H0 and in the tangential direction (along the sphere surface) with a velocity V0 at distances of the
order of a0. Let us introduce the parameter of shallow water on a sphere

ε = H0/a0.

We denote

D′
0 = ∂τ + u ∂z1 + v ∂θ + (sin θ)−1w ∂ϕ. (3.5)

Then, taking into account assumption (3.4), we write Eqs. (3.2) in the form

ε2D′
0u = ε

(
v2 + w2 +

2Ω0a0

V0
w sin θ +

(a0Ω0

V0

)2

sin2 θ
)
− P0

R0V 2
0

(
ρ−1pz1 + g

R0H0

P0

)
,

D′
0v = w2 cot θ − εuv + 2

a0Ω0

V0
w cos θ +

(a0Ω0

V0

)2

sin θ cos θ − P0

R0V 2
0

pθ

ρ
,

(3.6)

D′
0w = −vw cot θ − 2

a0Ω0

V0
v cos θ − P0

R0V 2
0

pϕ

sin θ
− ε

(
w +

2a0Ω0

V0
sin θ

)
u,

uz1 + (sin θ)−1(wϕ + (v sin θ)θ) + 2εu = 0.

Let us assume that the parameter ε is small and the dimensionless complexes a0Ω0/V0 and P0/(R0V
2
0 ) in Eqs. (3.6)

are finite. Then, omitting all terms containing ε and ε2 in Eqs. (3.6), we use the first equation of system (3.6) to
derive the condition of motion hydrostaticity

ρ−1pz1 +R0H0g/P0 = 0. (3.7)

Integrating Eq. (3.7) with respect to z1 and taking into account the dynamic condition p = 0 on the free boundary,
we obtain the relation for pressure:

p = −R0H0g(z1 − h)ρ/P0. (3.8)

Equation (3.8) yields the formulas for the pressure gradient on the sphere

ρ−1pθ = R0gH0hθ/P0, ρ−1pϕ = R0gH0hϕ/P0. (3.9)

The kinematic condition (3.3) acquires the form

hτ + vhθ + (sin θ)−1whϕ = u. (3.10)

The last equation of system (3.6), which is the continuity equation, can be integrated with respect to z1 under the
assumption that the velocity components u and v are independent of the variable z1:

u = −z1(sin θ)−1(wϕ + (v sin θ)θ). (3.11)

Under this assumption, the gas flow becomes shearless with respect to the vertical coordinate; therefore, the value
of the velocity coordinate u can be taken as its value on the free boundary z1 = h. Assuming that z1 = h in
Eq. (3.11) and substituting Eq. (3.11) into Eq. (3.10), we obtain the equation

hτ + vhθ + (sin θ)−1whϕ + (sin θ)−1h(wϕ + (v sin θ)θ) = 0. (3.12)

The second and third equations of system (3.6) [after substitution of Eqs. (3.9) into Eqs. (3.6) and omitting terms
containing ε] and Eq. (3.12) form a closed system of three equations for three functions h, v, and w of the independent
variables τ , θ, and ϕ. In this case, the term u ∂z1 should be omitted in the total derivative (3.5).
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Let us introduce the Rossby number (R0) and Froude number (F )

R0 = V0/(2Ω0a0), F = V0/
√
gH0,

which are the characteristic dimensionless parameters of the problem. For convenience of writing the final system
of shallow water equations on a rotating sphere, we again use the time t instead of τ and introduce the parameters

r0 = R−1
0 , f0 = F−2.

Then, the sought system acquires the form

D0v = w2 cot θ + r0w cos θ + (1/4)r20 sin θ cos θ − f0hθ,

(3.13)
D0w = −vw cot θ − r0v cos θ − f0(sin θ)−1hϕ, D0h+ (sin θ)−1h(wϕ + (v sin θ)θ) = 0,

where D0 = ∂t + v ∂θ + (sin θ)−1w ∂ϕ is the total derivative on the sphere. Equations (3.13) are satisfied on the
sphere surface in a gas layer whose thickness is small, as compared with the sphere radius.

Let us note some general properties of system (3.13).
1. Equations (3.13) coincide with the equations of gas dynamics for a polytropic gas in the case of isentropic

motions of a special form, which occur on the surface of the rotating sphere; in this case, the radial component
of velocity equals zero, and all sought functions are independent of the quantity r. Such motions of the gas may
be called spherical motions. For ρ = h, the equation of state has the form p = f0ρ

2/2. Hence, system (3.13) is
hyperbolic and inherits all properties of gas-dynamic equations, in particular, the presence of acoustic characteristics.

2. System (3.13) is determined on a sphere with punctured points θ = 0 and π in the poles. These singular
points are points of intersection of the axis of revolution with the sphere surface. Thus, the equations describing
the motion already have two singularities, which have the physical meaning, namely, the singularities of the flow in
the poles.

4. Evaluation of the Boundaries of the Area of Applicability of the Model. For the Earth, we
have Ω0 = 7.3 · 10−5 sec−1 and a0 = 6.4 · 106 m. Let us consider the motions with the characteristic durations
from one day to several weeks, i.e., T0 ∼ 106 sec (1 day = 86,400 sec). For such motions, we have H0 ∼ 103 and
V0 ∼ 10 m/sec. Then, we obtain U0 ∼ 10−3 m/sec. Let us estimate the Rossby and Froude numbers:

R−1
0 = 2Ω0a0/V0 ≈ 90, F−2 = gH0/V

2
0 ≈ 102.

Hence, the parameters r0 = R−1
0 and f0 = F−2 in Eqs. (3.13) indeed have the same order, and rotation and gravity

corresponding to these parameters exert comparable effects on medium motion. The parameter ε and the vertical
velocity are negligibly small, as compared with the parameters r0 and f0.

5. Vorticity Equation. The vector velocity field tangential to the sphere u = (0, v, w), which satisfies
system (3.13), has the vorticity ω = rotu = (ω, 0, 0) directed along the radius:

ω = (sin θ)−1((w sin θ)θ − vϕ) = wθ − (sin θ)−1vϕ + w cot θ. (5.1)

To derive the vorticity equations, we write the first two equations of system (3.13) in the form of the Gromeka–Lamb
equations:

vt − wΩ1 +Gθ = 0, wt + vΩ1 + (sin θ)−1Gϕ = 0. (5.2)

Here, Ω1 = ω+ r0 cos θ and G = f0h+(v2 +w2)/2− (1/8)r20 sin2 θ. The quantity Ω = h−1Ω1 is called the potential
vorticity [3]. Then, the following lemma is valid.

Lemma 1. The potential vorticity is conserved along the trajectories

D0Ω = 0. (5.3)

Proof. We multiply the second equation in (5.2) by sin θ, differentiate the first equation in (5.2) with respect
to ϕ, differentiate the second equation in (5.2) with respect to θ, and subtract the first equation from the second
one. Multiplying the resultant relation by (sin θ)−1 and changing the sign, we obtain

(wθ − (sin θ)−1vϕ + w cot θ)t + vΩ1θ + (sin θ)−1wΩ1ϕ + (vθ + (sin θ)−1wϕ + v cot θ)Ω1 = 0

or

D0Ω1 + Ω1 div u = 0, (5.4)
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where div u = vθ + (sin θ)−1wϕ + v cot θ. In system (3.13), the equation for h has the same form that Eq. (5.4):

D0h+ h div u = 0. (5.5)

Hence, multiplying Eq. (5.4) by h, multiplying Eq. (5.5) by Ω1, and summing the resultant equations, we find

D0(Ω1/h) = 0.

Lemma 1 is proved.
Lemma 1 extends the statement about the behavior of potential vorticity, corresponding to this lemma in

the “plane” shallow water theory, to the spherical case.
6. Stationary Motions of Shallow Water. Let us consider stationary motions of shallow water on a

rotating sphere, which are described by the equations

Dsv = w2 cot θ + r0w cos θ + (1/4)r20 sin θ cos θ − f0hθ,

Dsw = −vw cot θ − r0v cos θ − f0(sin θ)−1hϕ, (6.1)

Dsh+ (sin θ)−1h(wϕ + (v sin θ)θ) = 0,

whereDs = v ∂θ+(sin θ)−1w ∂ϕ is the derivative along the streamlines. Equations (6.1) include the Bernoulli integral
and the integral of conservation of potential vorticity. The Bernoulli integral is obtained if the first equation of
system (6.1) multiplied by v is summed with the second equation multiplied by w. Conservation of potential
vorticity follows from Lemma 1.

To write these integrals, it is convenient to introduce the stream function ψ = ψ(θ, ϕ). As the third equation
of system (6.1) is written in divergent form

(hv sin θ)θ + (hw)ϕ = 0,

it can be satisfied by introducing the stream function ψ and assuming that

v = ψϕ/(h sin θ), w = −ψθ/h. (6.2)

In this case, we have Dsψ = 0. Let us use ∇s and Δs to denote the gradient and Laplace operators on a unit
sphere:

∇s =
( ∂

∂θ
, (sin θ)−1 ∂

∂ϕ

)
, Δs = (sin θ)−1 ∂

∂θ

(
sin θ

∂

∂θ

)
+ (sin θ)−2 ∂2

∂ϕ2
.

By calculating the vorticity Ω1 in terms of the stream function ψ and taking into account Eqs. (5.1) and (6.2),
we obtain

Ω1 = ω + r0 cos θ = −(sin θ)−1
(
(ψθ sin θ/h)θ + (sin θ)−1(ψϕ/h)ϕ) + r0 cos θ.

Let us denote q = h−1. Then, the expression for Ω1 acquires the form

Ω1 = −(sin θ)−1[q((ψθ sin θ)θ +(sin θ)−1ψϕϕ)+ψθqθ sin θ+(sin θ)−1ψϕqϕ]+r0 cos θ = −qΔsψ−∇sψ ·∇sq+r0 cos θ.

In the shallow water model, the equations of stationary motions

Ds((v2 + w2)/2 + f0h− (1/8)r20 sin2 θ) = 0, Ds(Ω1/h) = 0

integrated in terms of the stream function take the form

q2|∇sψ|2/2 + f0/q − (1/8)r20 sin2 θ = B0(ψ),

qΔsψ + ∇sψ · ∇sq − r0 cos θ = A0(ψ),
(6.3)

where A0 and B0 are arbitrary functions of their arguments. System (6.3) provides a complete description of
stationary flows of shallow water on a rotating sphere and is equivalent to system (6.1) for such flows. The
functions A0 and B0 characterize the values of energy and potential vorticity in terms of the stream function ψ.

The first equation in system (6.3) is an algebraic equation of the third power with respect to q. Let us write
in the following form:

q3 − a0q + b0 = 0. (6.4)
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Here, a0 = |∇sψ|−2(2B0 + r20 sin2 θ) and b0 = 2|∇sψ|−2f0 > 0. We may also assume that a0 > 0. Otherwise,
Eq. (6.4) has no positive solutions with respect to q. The discriminant of Eq. (6.4) is

D = 4a3
0 − 27b20. (6.5)

Hence, Eq. (6.4) has three real roots for D > 0. According to the Viette theory, two of these roots are positive,
while one root is negative and has to be omitted because q = 1/h > 0. The case where Eq. (6.4) has one real root
for D < 0 is also impossible, because this root has to be negative, as is predicted by the Viette theorem.

If discriminant (6.5) is positive and Eq. (6.4) has three real roots, then two of them are positive and
correspond to two different regimes of stationary motions. Thus, the following lemma is proved.

Lemma 2. For stationary flows of shallow water on a rotating sphere, two regimes of motions corresponding
to two different positive roots of Eq. (6.4) are possible.

7. Equivalence Transformation of Stationary Equations. For two-dimensional equations of hydro-
dynamics, the stream function is determined with functional arbitrariness: its arbitrary function also defines the
stream function. A similar (but slightly more complicated) situation occurs in the case of the stationary shallow
water equations (6.3).

Theorem 1. Let the set (ψ, q, f0, r0) define the solution of Eqs. (6.3) with specified functions A0 and B0,
χ = χ(z), χ′ > 0 is an arbitrary smooth, rigorously monotonic function, and Q0 �= 0 is a constant.

The quantities ψ1, q1, f01, and r01 and the functions A01 and B01 are defined as follows:

ψ = χ(ψ1), q =
Q0

χ′(ψ1)
q1, f0 =

Q3
0

χ′(ψ1)
f01, r0 = Q0r01,

A01 = Q−1
0 A0, B01 = Q−2

0 B0

(7.1)

(the prime indicates the derivative with respect to the argument ψ1). Then, the set (ψ1, q1, f01, r01) defines the
solution of Eqs. (6.3) with the functions A01 and B01 in the right sides.

Remark 1. Formulas (7.1) define an infinitely dimensional Lie group of equivalence of Eqs. (6.3), which
depends only on one arbitrary function χ of one argument and one constant Q0. The emergence of this group is
explained by functional arbitrariness in choosing the stream function. Equations (7.1) show how other parameters
of the problem are transformed thereby. It turns out that such a replacement involves transformation of the Froude
number F = f−2

0 with functional arbitrariness.
Particular cases of this transformation have a simple physical meaning. For f0 = r0 = 0, system (6.3)

describes the inertial stationary shallow water flows on a spherical surface without rotation. In this case, Eqs. (7.1)
define the transformation of system (6.3) with functional arbitrariness and can be used for solution multiplication:
based on the known solution ψ1, Eqs. (7.1) define a new solution.

For f0 �= 0, r0 �= 0, and a linear function ξ(ψ1) = ξ0ψ1 (ξ0 = const), formulas (7.1) define the scale
transformations (6.3). With an appropriate choice of the constants

Q0 = r0, ξ0 = r30/f0,

the parameters r0 and f0 can be made equal to unity. In this case, the Rossby number r0 and Froude number f0
appear in the right side of Eqs. (6.3) as multipliers at the functions A0 and B0.

Remark 2. It is known that stationary equations of gas dynamics with distributed density admit an infinitely
dimensional Lie group of equivalence, which is called the Munk–Prim transform [12]. This group transforms the
Bernoulli function (right side of the Bernoulli integral), entropy, and the equation of state ρ = a(s)b(p). By virtue of
the above-noted gas-dynamic analogy, shallow water equations coincide with equations of isentropic gas dynamics
with a polytropic equation of state with γ = 2 (for special solutions). Shallow water equations, however, do not
admit the Munk–Prim transform directly, because these transformations change the equation of state, which has
a fixed form p = ρ2/2 (ρ = h) for shallow water equations. Nevertheless, the stationary equations (6.3) admit the
infinitely dimensional Lie group (7.1), which transforms the parameter f0 in this equation of state.

Proof of Theorem 1. The theorem is proved by means of direct check. Let ψ = χ(ψ1) and q = Q(ψ1)q1,
where χ and Q are certain functions of ψ1. Then, we obtain the following formulas after omission of the index s at
differential operators:

∇ψ = χ′∇ψ1, Δψ = χ′Δψ1 + χ′′|∇ψ1|2, ∇q = QΔq1 +Q′q1∇ψ1. (7.2)
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Fig. 2. Equilibrium surface: (a) diametral cross section; (b) three-dimensional view.

Substituting Eq. (7.2) into system (6.3) as

Q2q21
2

χ′2|∇ψ1|2 +
f0
Qq1

− 1
8
r20 sin2 θ = B0,

Qq1χ
′ Δψ1 + (Qχ′′ +Q′χ′)q1|∇ψ1|2 +Qχ′∇q1 · ∇ψ1 − r0 cos θ = A0,

(7.3)

expressing |∇ψ1|2 from the first equation in (7.3), and substituting it into the second equation, we obtain

Qq1χ
′ Δψ1 +Qχ′ ∇q1 · ∇ψ1 − r0 cos θ +

2(Qχ′′ +Q′χ′)
q1Q2χ′2

(
B0 +

1
8
r20 sin2 θ − f0

Qq1

)
= A0. (7.4)

It follows from Eq. (7.4) that the second equation of (6.3) with Qχ′ = Q0 = const transforms to an equation of
the same form. Dividing the first equation in (7.3) by Q2q21/2 and equation (7.4) by Qq1, with Q = Q0(χ′)−1, we
obtain formulas (7.1). Theorem 1 is proved.

8. Simple Solutions. An important feature of the shallow water model derived is the presence of an
equilibrium state with zero relative components of velocity (u = w = 0) and with the following distribution of
depth:

h = α2
0(k

2
0 + sin2 θ). (8.1)

Here α2
0 = r20/(8f0) and k2

0 = 8f0h0/r
2
0 (h0 > 0) are constants. The velocity of propagation of acoustic disturbances

on solution (8.1) is c = (r0/2
√

2 )(k2
0 + sin2 θ)1/2. For θ ∈ (0, π), the equation

r = α2
0(k

2
0 + sin2 θ) (8.2)

in the space R
3(x) defines the surface of revolution, characterizing the equilibrium profile of depth, which differs

from the spherical profile. Figure 2 shows the surface described by Eq. (8.2).
Let us consider stationary motions of shallow water with both components of velocity v and w and depth h

depending only on the latitude θ. In this case, system (6.1) reduces to a system of ordinary differential equations

vv′ = w2 cot θ + r0w cos θ + (r20/4) sin θ cos θ − f0h
′,

vw′ = −vw cot θ − r0v cos θ, vh′ sin θ + h(v sin θ)′ = 0,
(8.3)

where the prime denotes the derivative with respect to θ. System (8.3) is integrated in its finite form.
There are two types of solutions: v ≡ 0 in solutions of the first type and v �= 0 in solutions of the second

type. Let us consider solutions of the first type. In this case, the second and third equations of system (8.3) are
identically satisfied, and this system reduces to one equation

w2 + r0w sin θ + (r20/4) sin2 θ − f0h
′ tan θ = 0 (8.4)
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relating the depth h to the circumferential component of velocity w. It follows from Eq. (8.4) that

w1,2 = −(r0 sin θ + 2ε(f0h′ tan θ)1/2)/2 (ε = ±1). (8.5)

Solutions (8.5) are determined at h′ tan θ > 0; hence, as sin θ > 0 for θ ∈ (0, π), we obtain h′ > 0 [θ ∈ (0, π/2)]
in the north hemisphere and h′ < 0 [θ ∈ (π/2, π)] in the south hemisphere. This solution describes the flow along
the parallels with an arbitrary depth profile, which monotonically increases in the north hemisphere and decreases
in the south hemisphere with increasing latitude. Solutions of the form (8.5) model flows, such as jet motions in
the atmosphere, which propagate predominantly along the parallels. In the Earth’s atmosphere, such flows arise on
cell boundaries. Thus, the polar front of jet flows is located between the polar cells and the Ferrel cells, whereas
subtropical jet flows separate the Ferrel cells and the Hadley cells [13]. In these convective cells existing in the
Earth’s atmosphere, the air masses from the equatorial region move to the north in the north hemisphere and to the
south in the south hemisphere, deviating from meridians due to the Coriolis force. When a certain critical pressure
is reached, a flow moving in the opposite direction (toward the equator) arises above the initial flow.

Let us consider solutions of type (8.5), which are critical everywhere. In other words, the equality w2 = f0h

is satisfied in the entire domain of solution definition, which implies that the velocity of propagation of acoustic
disturbances in the layer equals the velocity of particle motion along the streamlines. Then, Eq. (8.5) yields the
differential equation for the function h

h′ tan θ = 4f0
(
h− r0

4f0
sin θ

)2

, (8.6)

which is the Riccati equation. Introducing a new function z instead of h by the formula

h =
r0 sin θ

4f0

(
1 − z′

zr0 cos θ

)
, (8.7)

we transform Eq. (8.6) to the second-order linear equation

z′′ +
1

sin θ cos θ
z′ − r0 cos2 θ

sin θ
z = 0. (8.8)

Applying the substitution y = sin θ in Eq. (8.8), we obtain a modified Bessel equation with ν = 0 [14]:

yzyy + zzy − r0z = 0. (8.9)

Solution (8.9) has the form

z = C1I0(ξ) + C2K0(ξ), (8.10)

where I0 and K0 are the zero-order modified Bessel functions of the argument ξ = 2
√
r0y; C1 and C2 are arbitrary

constants.
Substituting the value of z calculated by Eq. (8.10) into Eq. (8.7), we obtain a formula of the form (8.5) for

the depth profile in the critical flow:

h =
r0 sin θ

4f0

(
1 − cos θ

r0

√
r0 (C1I1(ξ) − C2K1(ξ))√

sin θ (I0(ξ)C1 +K0(ξ)C2)

)
. (8.11)

Here ξ = 2
√
r0 sin θ; I1 and K1 are the first-order modified Bessel functions of the first and second kind. Note

that the replacement t = 1/y transforms Eq. (8.9) to the Kelvin equation and the corresponding modified Bessel
functions to the Kelvin functions. Solution (8.11) has to satisfy the above-formulated condition of monotonicity
h′ cos θ > 0. The velocity w is calculated by Eq. (8.5).

Conclusions. Equations of the shallow water model on a rotating attracting sphere are derived in the
paper. This model describes the motions of a continuous medium (air in the planetary atmosphere and liquid in
the world ocean) of global (planetary) scales, the thickness of the layer where the motions occur being small as
compared with the scales of motions on the planet surface. Because of the small thickness of the layer, the velocity
of the medium can be considered as its averaged value over the depth of the layer.

The system of equations derived coincides with equations of isentropic polytropic gas dynamics in the case
of gas motions on the surface of a rotating sphere. The system is hyperbolic and determined on a compact manifold
with singularities in the sphere poles.
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Conservation of potential vorticity along the trajectories is proved. For stationary flows, an equivalent system
of two equations in terms of the layer thickness and stream function is obtained; the existence of two regimes of
stationary motions of shallow water with different depth profiles is proved. An infinitely dimensional Lie group of
equivalence is found, which transforms the stream function, the depth, and the Froude number of the flow. The
simplest stationary solutions of the model, which correspond to the equilibrium state and differ from spherically
symmetric and zonal flows along the parallels, are described.

The model obtained seems to be promising for studying large-scale motions. An important feature of this
model is the possibility of using it to study results obtained in gas dynamics. A natural first step in this direction
is the search for simple exact solutions.
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